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7.1 Introduction

Fringe visibility is the fundamental observable in interferometric imaging, as it is related to

the object brightness via the van Cittert–Zernike theorem. Visibility is generally complex,

and can be expressed as Γ = V exp(−jφ), where V is the visibility amplitude and φ is the

fringe phase. We ordinarily work with normalized visibility, i.e., 0 < V < 1. With a two-

element, single-beam (i.e., non-cophased) interferometer, the fringe phase is corrupted by

the atmosphere and only the visibility amplitude is useful for imaging (typically, parametric

imaging of compact sources; see, for example Boden et al. 1999; Mozurkewich et al. 1991).

While phase and visibility are usually estimated via the same mechanism, the discussion

here will be limited to estimation of the visibility amplitude.

This brief review will touch on visibility estimation via fringe scanning, the signal-to-noise

ratio of the visibility estimator, estimator and atmospheric biases, and approaches to cali-

bration.

7.2 Fringe Scanning and Matched Filtering

Visibility is just the contrast of the spatial fringe pattern. Most measurement schemes used

with Michelson combiners use fringe scanning to convert the spatial fringe pattern to a
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104 CHAPTER 7. VISIBILITY ESTIMATION AND CALIBRATION

temporal one; demodulation of such a temporal signal presents a well-studied measurement

problem. This problem occupies only a small niche in the larger field of phase-shifting

interferometry for optical testing. The key aspects of the problem for stellar interferometry

are accommodating the low intensity of the faint stellar source and the limitations of low-

light-level detectors, so some of the more sophisticated phase-shifting algorithms are not

readily applicable to our problem.

Fringe scanning to temporally encode the spatial fringe pattern can use step or continuous

scanning. Generally, for fast scanning to follow atmospheric fringe motion, continuous

scanning is used to avoid settling-time issues. Both sawtooth and triangular waveforms

are used, depending on the problem (cf. Shao et al. 1988; Colavita et al. 1999). This is

discussed further by in Section 8.4.4.

Visibility estimation can be analyzed from several perspectives; one is to just consider it

a matched filter problem. The temporal fringe pattern for a normalized scan rate can

be written as I = N(1 + V cos(t + φ)), where N is flux, V is visibility, and φ is fringe

phase. This can also be written as the sum N + X cos(t) + Y sin(t), where X and Y

are the fringe quadratures. This signal is readily demodulated using the orthogonal basis

functions 1, cos(t), sin(t); from estimates of N , X, and Y we can compute the fringe phase

and visibility. With integrating detectors, we must discretize the basis functions to limit

the number of required reads (and attendant read noise), leading to, for example, four

and eight-bin algorithms. For the common four-bin algorithm, we approximate sin and

cos by quadrature squares waves; the basis functions remain orthogonal, but not optimal,

and there is a 0.9 dB signal-to-noise penalty on bright stars. Figure 7.1 illustrates fringe

estimation at PTI (Colavita et al., 1999).

There is considerable literature on this subject; a number of references are given by Lawson

at the end of Chapter 8.

7.3 Visibility Estimation and Signal-to-Noise Ratio

If the fringe phase is known, the fringe visibility can be estimated coherently using a coor-

dinate rotation on the measured fringe quadratures, normalized by the flux. If the phase

is unknown, we normally use an incoherent “energy” estimator. Starting with the latter,

squared fringe visibility V 2 can be estimated using the four-bin algorithm as (see Colavita

1999)

V 2 =
π2

2

〈X2 + Y 2 − Bias〉
〈N〉2 (7.1)

where the brackets refer to averaging over a number of samples, with the sample time chosen

to freeze the atmospheric fringe motion. The standard deviation of the V 2 estimator, σV 2 ,

can be calculated from the fourth-order statistics of Gaussian read noise and Poisson photon
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Figure 7.1: Fringe scanning with a sawtooth waveform at PTI.
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noise processes. When photon-noise limited, the signal-to-noise ratio (1/σV 2) is

1

σV 2

∝
[ √

N, N � 1

N, N � 1

]

. (7.2)

When read-noise limited (with read noise σrn), the signal-to-noise ratio is given by

1

σV 2

∝
(

N

σrn

)2

, N � σ2
rn. (7.3)

Thus, as one becomes photon-noise starved or read-noise limited, the signal-to-noise ratio

drops precipitously with decreasing light level as shown in Figure 7.2. The figure plots

the signal-to-noise ratio for a single sample; the signal-to-noise ratio improves as the square

root of the number of samples comprising the averages in Equation 7.1. However, especially

when read noise is involved, there is a fairly steep wall, beyond which unreasonable numbers

of samples are required to obtain a good final signal-to-noise ratio.

As mentioned above, if we know the fringe phase, we can use a coherent estimator. If we

know the fringe phase in real-time, we can use phase referencing to increase the coherent

integration time. If we know it a posteriori, we can use it to de-rotate and sum the fringe

quadratures before computation of the visibility. Both approaches help move the detection

problem away from the photon-starved or detector-noise-limited regimes.

Figure 7.3 illustrates the potential gain of coherently combining the fringe quadratures in

groups of 10 samples before computing V 2 with Equation 7.1. Note that for high signal-

to-noise ratios, coadding provides no benefit. More detail on this problem, and a number

of references, are given by Colavita (1999).

7.4 Estimator Biases

For an accurate estimate of visibility, it is necessary to compensate for biases attributable

to background, dark current, and detector imperfections. Also, as the V 2 estimator is

an energy estimator, we must correct for biases attributable to squaring quantities which

include noise. Bias-corrected visibility estimators are the first step in a data-calibration

pipeline, which will also include periodic observation of calibrator objects.

The first set of V 2 biases are the offsets, or zero points, of the estimates of X, Y , and N ;

these are typically calibrated through interspersed background measurements, i.e., measure-

ment of the quantities when pointed at dark sky. While in principle X and Y should have

no offsets, even in the presence of a finite background, in practice detector nonlinearities

and reset tails introduce small offsets requiring calibration.

The second set of biases are the variances of the underlying Poisson photon-noise and

Gaussian detector-noise processes which arise when squaring the fringe quadratures to

compute the numerator of Equation 7.1. The photon noise bias takes the form 〈X 2 +Y 2〉 =
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Figure 7.2: Signal-to-noise ratio of the V 2 estimator for 1 sample vs. photons per
sample, for different amounts of read noise. 6.3, 15, and 45 electrons per sample
are required to achieve an signal-to-noise ratio of 1 for the case of 0, 3, and 10
electrons read noise.
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Figure 7.3: Signal-to-noise ratio of the V 2 estimator vs. photons per sample after av-
eraging for 10,000 total samples, with and without coadding the phasors into groups
of 10 samples before computing V 2. With no read noise, a signal-to-noise ratio of
100 is achieved in 10,000 samples with 6.3 and 45 electrons per sample for the case
of 0 and 10 electrons read noise, and with 2.6 and 15 electrons per sample when the
phasors are coadded to groups of 10 before computing the visibility.
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k〈N〉, where k is the gain of the signal chain (counts/electron), with X, Y , and N in detector

units. The read-noise bias takes the form 〈X2+Y 2〉 = 4k2σ2
rn, where the read noise variance

is for a single double-correlated read (a four-bin algorithm has been assumed). These biases

can be calibrated several ways: one approach is to determine the detector-noise term from

〈X2 + Y 2〉 as measured on dark sky, and the photon-noise term from the measured value

of 〈N〉 and an estimate of k. The gain k can be readily determined from measurements of

〈X2 + Y 2〉 at two different light levels (see Colavita 1999).

It’s important to note that, especially at low light levels, errors in measuring these vari-

ance terms can become the dominant error in estimating visibility, as the signal-to-noise

ratio of these calibrations is the same as that of the measurements they are being used

to calibrate. Thus observation planning must allocate sufficient integration time for the

calibration measurements.

This topic is discussed in more detail in the context of PTI by Colavita (1999).

7.5 Atmospheric Biases

I can do no more than briefly touch on the effects of atmospheric biases; for more detail,

see, for example Tango and Twiss (1980).

Atmospheric biases are challenging to calibrate to high precision as the atmospheric statis-

tics are not stationary. The approach used by most groups is to minimize these biases

through design or observing strategy; apply modest modeling, when appropriate, to com-

pensate for first-order effects; and use rapid observations of calibrators to track the residual

visibility variations.

7.5.1 Spatial Wavefront Errors

For slow guiding, the visibility reduction attributable to wavefront errors can be written

〈V 2〉 = exp[−2.06(d/r0)
5/3], (7.4)

where d is the subaperture diameter and r0 is the atmospheric coherence diameter. This

term can be reduced through fast guiding, or through the use of adaptive optics (AO).

Except for a factor of 2 in the exponent, the Strehl of an AO system follows a similar

expression, and the AO literature addresses this problem in detail (cf. Tyson 1997).

However, for interferometers, which usually process only a single spatial mode per aperture,

the option exists to apply modal filters to correct the visibility reduction attributable to

spatial wavefront errors. Single-mode optical fibers are often used for this purpose. They

can be used either to filter the combined light from the two apertures, or to implement

a fully fiber-optic beam combiner. As the fibers select only a single spatial mode, the

visibility (attributable to wavefront errors only) is given by the scintillation formula V 2 =
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4I1I2/(I1 + I2)
2, where I1 and I2 are the coupled intensities from each aperture into the

fiber(s), which vary with fluctuations in the instantaneous wavefront distortion. For a

post-combination fiber, one can show that only the average ratio of 〈I1〉/〈I2〉 is needed

to calibrate the residual V 2 reduction (Shaklan et al., 1992). While it can be hard to

get an accurate simultaneous measurement with this architecture, it is often adequate to

use a nearby calibrator, assuming integration times long enough that only the systematic

part of the ratio remains. Alternatively, this term can be calibrated through the use of a

fully single-mode combiner, which simultaneously samples the coupled intensities from each

aperture (Coudé du Foresto, 1994).

As an example, Figures 7.4 and 7.5 present data from PTI plotting V 2 vs. time for a number

of sources during a night. Each point represents a 25-sec average. Of note is the difference in

visibility between the broadband white-light channel, which is not spatially filtered, and the

spectrometer channel (actually, a composite estimator of all of the spectrometer channels),

which uses a post-combination single-mode spatial filter. On this night, use of the fiber

doubles the measured V 2.

7.5.2 Temporal Errors

For fringe tracking that is slow compared with the sample time (generally a good approxi-

mation), the visibility reduction attributable to fringe motion can be written

〈V 2〉 = exp[−(T/T0,2)
5/3], (7.5)

where T is the coherent integration time and T0,2 is the two-aperture variance-definition

coherence time. While there are no modal filters applicable to temporal blurring, some

compensation for this visibility reduction can be applied using contemporaneous mea-

surements of the fringe phase motion. In particular, a visibility correction of the form

V 2 → V 2 exp(C0σ
2
∆φ) can be applied, where σ2

∆φ is the measured phase jitter during the

observation interval, and C0 is a scale factor which can be derived from an atmospheric

model (see Colavita 1999).

7.5.3 Finite Coherence

The V 2 envelope with respect to delay x is just the magnitude squared of the Fourier

transform of the system bandpass. For a rectangular bandpass,

V 2 ∝ sinc2

( πx

Rλ

)

, (7.6)

where λ is wavelength and R is the spectrometer resolution R = λ/∆λ. Thus for accurate

visibility measurements, one must calibrate the shape of the envelope, or work in a narrow

band. At PTI, we have found it convenient to combine the visibility estimates from several

narrow-band spectrometer channels to synthesize a wide-band channel with a long effective

coherence length.
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Figure 7.4: V 2 values from the white-light channel on PTI vs. time. Each point rep-
resents a 25-sec average.

0

0.2

0.4

0.6

0.8

1

1.2

3 4 5 6 7 8 9 10 11 12 13

In
co

he
re

nt
 S

pe
c 

V
2

UT (hrs)

Incoherent Spec V2 Time Trace -- 99222.sum

HDC1279
HDC1326

HDC134323
HDC136695
HDC137510
HDC14055

HDC152614
HDC153226
HDC161797
HDC163947

HDC166
HDC166014

HDC1671
HDC177196
HDC18519

HDC185395
HDC186408
HDC189849
HDC193347
HDC194093
HDC196360
HDC199763
HDC214923
HDC215648
HDC218045
HDC220061
HDC225239
HDC234677

Figure 7.5: V 2 values from the spectrometer channel on PTI vs. time. Each point
represents a 25-sec average of the composite spectral value.
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7.5.4 Mismatched Stroke

Systematic errors accrue if the length of the pathlength-modulation stroke doesn’t match

the wavelength. This introduces errors in both the fringe phase and visibility estimates.

However, it can be corrected through a transformation applied to the measured fringe

quadratures (Colavita et al., 1999).

7.6 Conclusion

With a two-element interferometer, the amplitude of the complex fringe visibility is the

primary observable. By converting spatial fringe patterns to temporal ones, we reduce the

measurement to a matched-filter problem that is readily solved. While we typically average

a number of short exposures to provide a good visibility estimate, at low light levels the

estimator statistics change from
√

N to N or N 2, establishing an effective limiting mag-

nitude. This magnitude can be increased through larger apertures with AO and longer

coherent integration times with phase referencing. For the case of a fringe-tracking inter-

ferometer where the signal-to-noise limit is attributable to the use of narrow channels on

the spectrometer side of the system, coherent visibility estimators can be used to improve

the visibility estimates. No matter what type of estimator is used, accurate correction must

be applied for biases in the estimator itself, as well as biases attributable to atmospheric

and systematic errors.
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